Catalytic Oxidation of Phenols to p-Quinones with the Hydrogen Peroxide and Methyltrioxorhenium(VII) System

Waldemar Adam,*,† Wolfgang A. Herrmann,‡ Jianhua Lin,^{†,§} and Chantu R. Saha-Möller[†]

Institute of Organic Chemistry, University of Würzburg, Am Hubland, D 97074 Würzburg, Germany, and Institute of Inorganic Chemistry, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany

Received August 9, 1994

Introduction

It is well-known that quinones possess pronounced bioactivity¹ and, consequently, are important for medicine.² For example, 2-methyl-1,4-naphthoquinone, vitamin K₃, constitutes an important additive in animal feed, which is used commercially in large quantities. Furthermore, alkyl-substituted p-benzoquinones serve as useful dienophiles in Diels-Alder reactions and are versatile starting materials in the synthesis of many natural products. Thus, trimethyl-p-benzoquinone and 2,3dimethoxy-5-methyl-p-benzoquinone are especially valuable starting materials for the synthesis of vitamin E and coenzyme Q.³

Since many substituted phenols are readily available and usually quite inexpensive, they serve as desirable starting materials for the synthesis of *p*-benzoquinones, which constitute important oxidations in organic synthesis. When hydrogen peroxide is employed as oxidant, activation is normally required, which is generally accomplished by transition metal catalysts. A novel catalyst,⁴ potentially useful for this purpose, is methyltrioxorhenium(VII) (CH₃ReO₃, MTO), which is stepwise converted by hydrogen peroxide (eq 1) into the mono- and

bis(peroxo)rhenium complex $CH_3Re(O_2)_2O \cdot H_2O(1)$. The latter one has been isolated and fully characterized by X-ray crystallography,^{4a} and it exhibits high activity and selectivity in the epoxidation of olefins^{4,5} and more recently for the oxidation of arenes to quinones.⁶ In the latter case, for other oxidation systems,7 mono- and dihydroxy arenes were proposed as intermediates. Consequently, we applied the novel H₂O₂/MTO oxidant to

- [†] University of Würzburg. [‡] Technische Universität München.
- [§] Alexander von Humboldt Research Fellow (1992–1994).
- (1) Rodriguez, J.; Quiñoá, E.; Riguera, R.; Peters, B. M.; Abrell, L. M.; Crews, P. Tetrahedron 1992, 48, 6667.
- (2) Suttie, J. W. Biofactors 1988, 1, 55.
- (3) For a review: Yamada, S.; Takeshita, T.; Tanaka, J. J. Synth.
- (3) For a review: Yamada, S.; Takeshita, T.; Tanaka, J. J. Synth. Org. Chem. Jpn. 1982, 40, 268.
 (4) (a) Herrmann, W. A.; Fischer, R. W.; Scherer, W.; Rauch, M. U. Angew. Chem. 1993, 105, 1209; Angew. Chem., Int. Ed. Engl. 1993, 32, 1157. (b) Herrmann, W. A.; Fischer, R. W.; Rauch, M.; Scherer, W. J. Mol. Catal. 1994, 86, 243.
 (5) Herrmann, W. A.; Fischer, R. W.; Marz, D. W. Angew. Chem. 1991, 103, 1706; Angew. Chem., Int. Ed. Engl. 1991, 30, 1638.
 (6) Adam, W.; Herrmann, W. A.; Lin, J.; Saha-Möller, C. R.; Fischer, W. G. Verreis, J. D. G. Angew. Chem. press.
- R. W.; Correia, J. D. G. Angew. Chem., in press.

(7) Yamaguchi, S.; Shinoda, H.; Inoue, M.; Enomoto, S. Chem. Pharm. Bull. 1986, 34, 4467.

hydroxy arenes and provide herein a convenient catalytic oxidation procedure for the preparation of p-quinones.

Results and Discussion

The results of the MTO-catalyzed oxidation of phenols and naphthols 2 to guinones 3 and 4 with H_2O_2 in acetic acid (eq 2) are summarized in Table 1. Thus, in the

	$\begin{bmatrix} R^{1} \\ R^{2} \\ H_{2}O_{2}, N \\ ACO \\ 20 - 40 \\ R^{2} \end{bmatrix}$		$\int_{R^2}^{R^1} + \frac{HO}{R^3} \int_{R^2}^{HO}$	R^1 (2) R^2 (2)	
	R ¹	R ²	R ³	R ⁴	
2 - 5a	Ме	Ме	Me	н	
2b	Ме	Me	н	Me	
2, 3c	Ме	Me	н	н	
2 - 4d	Ме	Н	Me	н	
2 - 4e	íPr	н	Me	н	
2f	Ме	Н	н	Me	
2g	<i>t</i> Bu	н	н	<i>t</i> Bu	
2 - 5h	н	Ме	Me	н	
2 - 4i	н	<i>t</i> Bu	<i>t</i> Bu	н	
2, 3j	Me	н	н	н	
2, 3k	н	Me	н	н	
2, 31	н	Н	н	н	
2 - 5m	-CH:CHC	H:CH-	н	н	
2, 3, 5B	-CH:CHC	H:CH-	н	Me	
2, 30	-CH:CHC	H:C(OH)-	н	н	
3, 5p	Me	Me	Me	Me	

presence of catalytic amounts of MTO (2 mol %), the corresponding p-quinones **3a-1** were obtained in fair to high yields. In a control experiment without MTO the oxidation was very slow. For example, less than 10% of the quinone was obtained after 4 h at 40 °C in the oxidation of 2,3,6-trimethyl- or 2,6-dimethylphenol. Consequently, MTO is necessary for the oxidation. Furthermore, under the conditions of the H2O2/MTO/AcOH oxidation, the quinones 3 were quite stable, as confirmed for 2-methyl-1,4-naphthoquinone or trimethyl- and 2,6dimethyl-p-benzoquinones, which were recovered in over 93% after 4 h at 40 °C. Therefore, hydroxy-substituted p-quinones 4 (overoxidation products) are not derived from further oxidation of the p-quinones 3.

The reaction temperature has a pronounced effect on the oxidation since at higher temperature higher conversion at little lower selectivity were obtained (Table 1, entries 8 and 10). When a larger number of equivalents (Table 1, entries 8 and 9) and higher concentrations of hydrogen peroxide (Table 1, entries 8 and 11) were employed, better conversions of the phenol 2g and higher yields of the quinone 3g were achieved. Apparently,

Table 1. MTO-Catalyzed Oxidation of Alkyl-Substituted Phenols to p-Quinones and Hydroxyquinones by $H_2O_2^a$

		$H_{0}O_{0}(\%)$	temn	time	convn	yield ^b (%)	
entry	phenol	(equiv)	(°C)	(h)	(%)	3 °	4^{d}
1	2a	83 (5)	40	2	100	70	3
2	2b	83 (5)	20	2	100	50	2
3	2 c	83 (5)	40	2	100	36	
4	2d	83 (5)	40	2	100	45	3
5	2e	83 (5)	40	2	100	4	8
6 ^e	2f	83 (10)	40	4	95	50 (53)	5 (5)
7 f	2f	35 (5)	40	4	54	25(46)	11 (21)
8	2g	83 (5)	40	4	86	63 (74)	7(8)
9	$2\mathbf{g}$	83 (10)	40	4	92	68 (74)	2(2)
10	2g	83 (5)	20	4	58	45 (77)	11 (19)
11	2g	35 (5)	40	4	58	41 (71)	9 (15)
12	$2\check{\mathbf{h}}$	83 (5)	40	2	100	43	7
13	2h	83 (5)	20	2	87	39 (45)	10 (11)
14^{g}	2i	83 (5)	40	4	81	9 (11)	2(2)
15	2 i	83 (10)	40	4	93	42 (45)	
16	$2\mathbf{k}$	83 (5)	40	2	100	24	
17	21	83 (10)	40	4	85	31 (37)	
18	2m	83 (5)	20	2	100	57	
19	2n	83 (5)	20	2	100	74	6
20	2 0	83(5)	20	2	100	41	

^a Reaction conditions: mol ratio **2**:MTO = 1:0.02, acetic acid as solvent, N₂ atmosphere. ^b Yield of isolated product; in parentheses are given the yields corrected for converted starting material. ^c **3b** = **3a**, **3f** = **3h**, **3g** = **3i**. ^d **4b** = **4a**, **4f** = **4h**, **4g** = **4i**, **4n** is 2-methyl-3-hydroxynaphthoquinone. ^e Also 23% Diels-Alder dimer **6f** was obtained. ^f Also 17% Diels-Alder dimer **6f** was obtained. ^g Also 5% anhydride **7i** was obtained.

water retards the $H_2O_2/MTO/AcOH$ oxidation system, and therefore, the use of concentrated hydrogen peroxide is advantageous.

As previously reported,⁶ MTO is a strong Lewis acid and catalyzes the formation of peroxyacetic acid between AcOH and H_2O_2 . Therefore, a control experiment was conducted to assess how effectively authentic peroxyacetic acid oxidizes phenol 2a to the quinone 3a and the hydroxyquinone 4a under the H₂O₂/MTO/AcOH oxidation conditions. Since only <10% guinone **3a** was produced from 2,3,6-trimethylphenol (2a) and at a significantly lower reaction rate than with H₂O₂/MTO/AcOH oxidation system, it is concluded that the bis(peroxo)rhenium complex 1 constitutes the dominant active species in the present phenol oxidation. That bis(peroxo)complex 1 oxidizes phenols to quinones has been confirmed by a control experiment for derivative 2a, for which stoichiometric amounts (2a:1 = 1:3.6) of the isolated complex 1 afforded the quinone 3a in high yield (> 90%).

As expected from the electrophilic H₂O₂/MTO/AcOH oxidant, the more electron-rich phenol, the higher the oxidation rate as expressed by the extent of conversion of the aromatic substrate (Table 1). This is evident in the oxidation of 2,3,6-trimethylphenol (2a) versus the parent phenol 21 (Table 1, entries 1 and 17) for which under otherwise identical conditions double reaction time was necessary for 85% conversion compared to 100% for the trimethylphenol 2a. A more direct comparison offers 2,3,5-trimethylphenol (2b) versus 3,5-dimethylphenol (2h), cf. entries 2 and 13 in Table 1, which under the same conditions proceed in 100% and 87% conversion. Furthermore, comparison of the phenols **2a,f,j,l** (Table 1, entries 1, 6, 15, and 17) reveals that better yields of quinone are obtained with a higher degree of methyl substitution, *i.e.*, $2\mathbf{a} > 2\mathbf{f} > 2\mathbf{j} > 2\mathbf{l}$.

It is worthy of note that under the same reaction conditions, almost the same extent of conversion was obtained for 2,6-dimethyl- (**2f**) and 2,6-di-*tert*-butylphenol (2g) by the $H_2O_2/MTO/AcOH$ oxidant (Table 1, entries 6 and 9, 7 and 11). These results indicate that the oxidation of 2,6-dialkyl-substituted phenols is not sensitive to steric effects of the alkyl substituents. Thus, it seems that the hydroxy group of the phenol is not attacked first by the bis(peroxo)rhenium complex 1 since steric effects would be expected.

Some phenols gave the hydroxylated *p*-benzoquinone 4 as byproducts (Table 1). Since the latter were not formed by overoxidation of the corresponding quinone 3 (control experiment), the hydroquinones 5 may serve as likely intermediates. As anticipated, the oxidation of the hydroquinones **5a,h,m,n,l** (for structures cf. eq 2) by H_2O_2 in the presence of MTO (2 mol %) in AcOH led to high yields (90-100%) of quinones 3, but also some hydroxylated quinones 4 (8-9%) were obtained, except in the case of 2,3,5,6-tetramethylhydroquinone (**5p**). For the latter, all remaining positions are blocked by methyl groups and the quinone **3p** is produced quantitatively.

H₂O₂/MTO is a powerful epoxidizing agent for olefins,^{4,5} and therefore, a plausible mechanism, which involves as the initial step arene oxide formation, is proposed in Scheme 1. We suggest that the first oxidation step may afford the two arene oxides **A** and **B**. Since the major products in the oxidation of the phenols **2** are the quinones **3** (Table 1), formation of the intermediary epoxide **A** dominates presumably for steric reasons. Acidcatalyzed isomerization to the hydroquinone **5** and subsequent oxidation affords the quinones **3** and **4**, again through arene oxides.

Evidence for the formation of arene oxide **B** is provided by the minor products observed in the oxidation of 2,6dimethylphenol (**2f**) and 3,5-di-*tert*-butylphenol (**2i**), namely the quinol dimer **6f** and the muconic anhydride **7i** (Table 1, entries 6, 7 and 14). As shown in Scheme 1, the hydroxy epoxide **B** derived from phenol **2f** should open up spontaneously to its *o*-quinol, which is known to dimerize.⁸ In the case of phenol **2i**, the catechol derivative is formed accordingly, and its further oxidation⁹ through the *o*-quinone affords the anhydride **7i**. A control experiment with the authentic *o*-quinone gave quantitatively **7i** under the conditions of the $H_2O_2/MTO/$ AcOH oxidation.

In summary, MTO-catalyzed oxidation of hydroxysubstituted arenes 2 by 83% aqueous hydrogen peroxide in acetic acid affords the corresponding p-quinones 3 in rather high yield, in which the bis(peroxo)rhenium complex 1 plays the dominant role as the active oxidant. The present catalytic method compares well with those reported in the literature for the oxidation of 2,6dimethyl- and 2,3,6-trimethylphenols to their p-quinones (Table 2) and constitutes a convenient and novel direct synthesis of p-quinones from phenols under environmentally acceptable conditions.

Experimental Section

Methyltrioxorhenium(VII) and methyl bis(peroxo)rhenium (1) were prepared according to the previously reported methods.^{4,10}

(9) Funabiki, T.; Konishi, T.; Kobayashi, S.; Mizoguchi, A.; Takano, M.; Yoshida, S. *Chem. Lett.* **1987**, *4*, 719.

⁽⁸⁾ McClure, J. D. J. Org. Chem. 1963, 28, 69.

 ^{(10) (}a) Herrmann, W. A. Angew. Chem. 1988, 100, 1269; Angew.
 Chem., Int. Ed. Engl. 1988, 27, 1297. (b) Herrmann, W. A.; Kuchler, J. G.; Weichselbaumer, G.; Herdtweck, E.; Kiprop, P. J. Organomet.
 Chem. 1989, 372, 351.

⁽¹¹⁾ Ito, S.; Aihara, K.; Matsumoto, M. Tetrahedron Lett. 1983, 5249.
(12) Shimizu, M.; Orita, H.; Hayakawa, T.; Takehira, K. Tetrahedron Lett. 1989, 471.

⁽¹³⁾ Bacon, R. G. R.; Izzat, A. R. J. Chem. Soc. 1966, 791.

Scheme 1

Table 2. Oxidation of Phenols 2a, f to Benzoquinones 3a, f with H_2O_2 Catalyzed by Transition Metal Compounds

entry ^a	phenol	catalyst	solvent	temp (°C)	time (h)	convn (%)	quinone	yield (%)	ref
1	2a	RuCl ₃	H ₂ O	r.t.	<5	99	3a	90	11
2	2a	$H_{3}PMo_{12}O_{40}$	AcOH	30	5	100	3a	78	12
3	2a	CH ₃ ReO ₃	AcOH	40	2	100	3a	70	. b
4	2f	TiCl ₃	AcOH	60	4-5		3f	51	13
5	2f	H ₃ PM0 ₁₂ O ₄₀	AcOH	30	5	51	3f	25	12
6	2f	CH ₃ ReO ₃	AcOH	40	4	95	3f	53°	ь

^a Best runs were chosen except entries 3 and 5. ^b This work (Table 1, entry 1 and 6). ^c Corrected for converted starting phenol.

2,6-Dimethyl-1,4-benzenediol¹⁴ and 2,3,5,6-tetramethyl-1,4-benzenediol¹⁵ were obtained by the literature method. All other reagents were purchased from standard chemical suppliers and purified before use when not of analytical quality. H₂O₂ (83%) was purchased from Peroxid-Chemie GmbH, Pullach bei München, Germany.

Caution! Concentrated H_2O_2 is potentially explosive. Appropriate safety precautions must be taken such as working in the hood behind a safety shield.

IR spectra were recorded on a Perkin-Elmer 1420 spectrophotometer. UV-vis spectra were taken on a Hitachi U-3200 spectrophotometer. ¹H and ¹³C NMR spectra were measured on a Bruker AC 250 spectrometer. The melting points were determined on a Büchi SMP melting point apparatus.

General Procedure for the Oxidation of Arenes. To a solution of the particular arene (1.0 mmol) and methyltrioxo-rhenium(VII) (0.02 mmol) in the appropriate solvent (2 mL) was

added 35% or 83% aqueous hydrogen peroxide (3.0-5.0 mmol). The reaction mixture was stirred at the desired temperature (20-40 °C) under a nitrogen gas atmosphere for the specified time (2 or 4 h). It was then diluted with 5 mL of water and subsequently extracted with methylene chloride (3 × 10 mL). The combined organic layers were washed with water (2 × 10 mL) and dried over Na₂SO₄, and the solvent was evaporated under reduced pressure (ca. 20-40 °C/20 Torr). The oxidation products were separated by flash column chromatography on silica gel (32-63 μ m mesh), identified by comparison with their reported physical and spectral data. The quantitative product data (Table 1) were determined by ¹H NMR analysis.

Acknowledgment. For generous financial support we thank the *Deutsche Forschungsgemeinschaft* (Schwerpunktprogramm "Peroxidchemie: Mechanistische und präparative Aspekte des Sauerstofftransfers" and SFB 347 "Selektive Reaktionen Metall-aktivierter Moleküle"), the *Fonds der Chemischen Industrie*, and the Volkswagen-Stiftung.

⁽¹⁴⁾ Carpino, L. A.; Triolo, S. A.; Berglund, R. A. J. Org. Chem. 1989, 54, 3303.

⁽¹⁵⁾ Thomas, A. D.; Miller, L. L. J. Org. Chem. 1989, 54, 3303.